
1

Model Checking a Self-Adaptive Camera Network
with Physical Disturbances

Gautham Nayak Seetanadi, Karl-Erik Årzén, Martina Maggio
Department of Automatic Control, Lund University
{gautham, karlerik, martina}@control.lth.se

Abstract—The paper describes the design and verification
of a self-adaptive system, composed of multiple smart cam-
eras connected to a monitoring station, that determines the
allocation of network bandwidth to the cameras. The design
of such a system poses significant challenges, since multiple
control strategies are active in the system simultaneously. In
fact, the cameras adjust the quality of their streams to the
available bandwidth, that is at the same time allocated by the
monitoring station. Model checking has proven successful to
verify properties of this complex system, when the effect of
actions happening in the physical environment was neglected.
Extending the verification models to include disturbances from
the physical environment is however nontrival due to the state
explosion problem. In this paper we show a comparison between
the previously developed deterministic model and two alternatives
for disturbance handling: a probabilistic and a nondeterministic
model. We verify properties for the three models, discovering
that the nondeterministic model scales better when the number
of cameras increase and is more representative of the dynamic
physical environment. We then focus on the nondeterministic
model and study, using stochastic games, the behavior of the
system when the players (cameras and network manager) col-
laborate or compete to reach their own objectives.

I. INTRODUCTION

This paper discusses the problem of bandwidth allocation
for a self-adaptive video-surveillance system, composed of
cameras, connected to a monitoring station. There are two
main aspects that should be taken into account: the cyber part
of the problem (the resource distribution), and the physical
part (the scene captured by the cameras). The characteristics
of the problem call for dynamic resource allocation, which in
well studied in autonomic computing. We would like to have
guarantees on the behavior of the final solution, hence we
resort to model checking, which allows us to formally analyze
and prove properties on the complex adaptation scheme.

On the cameras side, adaptivity is needed to match a given
bandwidth and storage space. On the monitoring side, varying
the amount of bandwidth given to each camera is the key
to fulfill dynamic time-varying requirements, like the need of
having better images for an indoor area during the day and
for the outdoor parking lot during night. Furthermore, scenes
can be easier or harder to record. Each frame is processed
and encoded, trying to compress it as much as possible, while
retaining all the information contained in the original image.

The authors are members of the LCCC Linnaeus Center and the ELLIIT
Strategic Research Area at Lund University. This work was supported by the
Swedish Research Council through the project “Feedback Computing”, VR
621-2014-6256.

This means that each part of the image is either encoded as
a new block or as some shifted block with respect to other
blocks in previous frames, with small modifications. In fact,
the encoded frame size, using a movement-based encoder
(like MPEG), depends on many different factors, including
(among others) nature, lighting conditions, and the amount
of movement detected and encoded in the scene [16]. Even
when images are transmitted as simple JPEG frames, the
encoded scene makes a difference in the image sizes [33].
This motivates the need to include some considerations about
the physics in the network bandwidth distribution protocols.
However, due to the unpredictable and everchanging nature
of the scene to be encoded, we argue that these considera-
tions should be indirect and come from measurements, rather
than prior knowledge. This paper describes the synthesis and
verification of a network bandwidth distribution scheme, that
reacts to changes in the physical environment without prior
knowledge of its characteristics.

Bandwidth distribution requires mechanisms to be in place
for multiple nodes to be allocated a certain amount of
the network bandwidth with non-violation guarantees [1].
Transmission protocols, like the Flexible Time Triggered for
Switched Ethernet (FTT-SE) [30], guarantee the non-violation
of the assigned bandwidth. In a recent paper [33], we designed
and implemented a scheme for bandwidth allocation and
camera adaptation that decouples the two inherent adaptation
dimensions: (i) bandwidth distribution, and (ii) adaptation of
encoding parameters. The encoding parameters are used to
adjust the frame sizes and trade the quality of the resulting
stream for its compression.

It is well known that multiple control policies can negatively
impact the performance of the system [21], so we needed
formal guarantees that this would not happen in this case. We
therefore resorted to model checking, and verified properties
like the transmission of frames [33]. A model checker ensures
that the bandwidth allocation protocol allows cameras to
transmit their frames (of a given size). If frame sizes were
known (or computable), this would be enough to ensure the
transmission of the video streams. However, due to the changes
in the recorded physical scenes, this assumption does not hold.

The changes in frame sizes due to the physical world can
be seen as a stochastic disturbance — some element that
randomly affects the scene and is reflected in the encoding.
We tried to apply model checking, including a stochastic
disturbance in our model. In so doing, we came across the
state space explosion problem [12]. This paper discusses the

2

problem we encountered and how we changed our model to
capture the stochastic disturbance and retain some ability to
verify properties of our video-surveillance scheme. Specifi-
cally, we make the following contributions:
• We incorporated disturbances in both a probabilistic and

a stochastic model, expanding on [33].
• We compared the probabilistic and the stochastic model

exposing their tradeoffs (capturing real-life behaviour
versus the computational complexity of the verification
process).

• We described, formally defined, and verified interesting
properties of a self-adaptive camera network.

• We compared the system performance in the case of
co-cooperative versus non-cooperative behaviors using
PRISM-games [10].

The remainder of this paper is organized as follows. Section II
states what are the requirements for the video-surveillance
system and specifies the model for our system’s components,
i.e, cameras and bandwidth (network) manager. Section III
gives some background about model checking, stochastic
games, and the properties that can be verified for our system.
We compare cooperative and non-cooperative schemes, high-
lighting their difference. Section IV compares the previously
devised and the proposed model, describes the state space
explosion problem and the results obtained with cooperative
and non-cooperative strategies. Section V gives an overview
of related work and Section VI concludes the paper.

II. SYSTEM OVERVIEW

The system is composed of a monitoring station and a set
of cameras that are connected to it via Ethernet networking, a
standard setup for a video-surveillance system. The left part of
Figure 1 shows an example of such a system. A monitor and
network manager M collects images from n cameras (five in
the figure), the i-th one being identified by the letter ci. The
monitor is in charge of assigning the network bandwidth as a
fraction of the total bandwidth H, a parameter of the system,
e.g., H = 4 [Mb/s].

c1 c2 c3 c4 c5

M

b = {b1, . . . b5}

time

schedule τM

τMb2(1) τMb2(2)

Fig. 1. System Overview

Generally speaking, the network manager assigns a vector
b. Each element of this vector b represents the percentage of
bandwidth that the corresponding camera can use. This means
that the network manager chooses each element bi such that∑n
i=1 bi = 1 and tries to maximize the quality of the camera

streams. For the resource allocation, we use the algorithm
proposed in [26] adapted to network bandwidth in [33],
because it guarantees properties like starvation avoidance and
fairness among the different streams.

The right side of Figure 1 shows a schedule example.
The time is divided into manager periods τM, each of them
corresponding to the transmission of a single frame from all
the cameras. The manager partitions each period giving some
time to each of the cameras. For example, camera c2 is allowed
to transmit in the first network manager period for a chunk
of time τMb2(1) and in the second one for a time τMb2(2).
During the time allocated to its slot, c2 can use the full network
bandwidth, therefore effectively being able to transmit a frame
of size up to τM · b2(k) · H[Mb]. In the example shown
in the figure, the network manager decides to increment the
percentage of time allocated to c2, which gets more bandwidth
in the second transmission slot with respect to the first one.
If a camera does not complete the transmission of a frame
during its slot, then the frame is dropped. Similarly, only a
given camera is able to transmit during its slot, and if the slot
is not fully utilized the corresponding time is wasted.

To fulfill the bandwidth requirements, for each frame w, the
i-th camera adjusts the quality of the video stream qi,w ac-
cording to a very simple control strategy, resembling the TCP
congestion window approach [40]. The video stream quality
is a parameter that corresponds roughly to the percentage of
information that is retained from the original image. Given
the implementation of the video encoding, the quality value
belongs to the interval 1 to 100, but in our system we do not
allow a quality lower than 15, to ensure we preserve some
information from the original frame. The congestion window
algorithm increases and decreases the quality as required.
Specifically, if the quality for the current frame resulted
in a succesful transmission, the quality is increased slowly,
incrementing it by 1. If the current frame is not transmitted
correctly due to lack of bandwidth, the quality is halved. For
other problems (e.g queue management, voice over IP), this
simple algorithm has been proven successful [20], [40].

Depending on the make and model, each camera has a
maximum frame size, which we indicate with si,max. Denoting
with si,w the size of frame w produced by camera i, we use
the following linear relationship to model the frame size in its
most general form.

si,w = 0.01 · qi,w · si,max + δsi,w (1)

Here, the factor 0.01 has the effect of correctly scaling the
quality value. δsi,w is a disturbance acting on the frame
size, that depends on the scene that is recorded. In previous
work [33], we modeled the system using this equation suc-
cessfully, but we set the disturbance to zero, to enable model
checking and avoid the state space explosion problem. In this
paper we investigate how to handle the disturbance so that
model checking is still able to give us some guarantees about
the system behavior.

III. VERIFICATION AND MODEL CHECKING

This section introduces Markov Decision Processes (MDPs)
and their extension to Stochastic Multi-Player Games (SMGs),
both of which are used to model the camera network behavior
including disturbances. Both the formalisms are supported by
the PRISM model checker [24], which we use to conduct

3

our study. The section first introduces the relevant concepts
and then describes their application to the context of our
problem. We compare three different models: the deterministic
one without disturbances introduced in [33], and two different
ways of handling disturbances: a probabilistic and a non-
deterministic model. We then discuss the properties that we
verify, corresponding to guarantees on the camera network
behavior.

A. Basic Concepts

Markov Decision Processes (MDPs): A MDP is a tuple
M = {S, s,A, Pr}, where S is a finite set of states, s ∈ S is
the initial state. A is a finite set of actions, Pr : S×A→ S is
a probabilistic (possibly partial) transition function mapping
state-action pairs to probability distributions over S. — MDPs
describe the evolution of a system when this depends both on
the action taken and on the current state the system is in. MDPs
are the prefereed method to model discrete-time systems that
exhibit both nondeterministic and probabilistic behavior [11].
We use MDPs to design the deterministic, probabilistic, and
non-deterministic versions of our camera network models.
Also, using the same formalism to define the three models
allows us to compare them effectively.

Stochastic Multi-Player Games (SMGs): A SMG is a tuple
G = {π, S, (Sπ, Sp), s, A, Pr, L}, where π is a finite set of
players. S is a finite set of states, partitioned into player
states Sπ and probabilistic states Sp. s is the set of initial
states (one for each player). A is a finite set of actions,
Pr : S×A→ S is a probabilistic (possibly partial) transition
function mapping state-action pairs to probability distributions
over S. L is an action labeling function used to synchronize
transitions happening in the space of different players. —
SMGs extend MDPs distinguishing between several types of
non-deterministic choices [23]. Each choice corresponds to an
action performed by a different player. In this paper, we use
SMGs to evaluate the concept of competitive vs collaborative
players in the camera network, i.e., to evaluate what happens
if the cameras cooperate with the manager towards a common
objective or if they try to maximize only their own reward.

Probabilistic vs Nondeterministic: In the model checking
terminology, a probabilistic model is a model that includes
some transition probability. From any state, the system can
envolve according to different transitions, satisfying a given
probability distribution. For example, from state s1, taking the
action a does not change the state with a probability of 0.05,
imply transitioning to state s2 with a probability of 0.45 and
drives the system to state s3 with a probability of 0.5. In a
nondeterministic model, there is no predetermined probability
distribution for the transitions. From state s1, taking the action
a can lead to three alternatives: staying in s1, transition to s2,
or transition to s3. The relative occurrence of these transitions
is not specified.

B. Modeling the Problem

We here describe three ways of modeling the camera
network behavior using MDPs.

1 formula update_bw = ... // update bandwidth of all cameras
2 module NetworkManager
3 [] (rm = rm_init) -> 1 : (rm’ = rm_calc_bw); // initialization
4 [end] (rm = rm_end) -> 1 : (rm’ = rm_end); // self-absorbing
5 [man_inter] (rm = rm_calc_bw) & (!end)-> 1 :
6 (rm’ = rm_alloc_bw) & (bw’ = update_bw);
7 // bw_allocated: allocating bandwidth to camera and waiting,
8 // end if reached the maximum number of frames
9 [bw_allocated] (rm = rm_alloc_bw) & (frames < max_frames) &

10 (!end) -> 1 : (rm’ = rm_wait) & (frames’ = frames + 1);
11 [bw_allocated] (rm = rm_alloc_bw) & (frames >= max_frames) &
12 (!end) -> 1 : (end’ = true) & (rm’ = rm_end); // final
13 // last_cam_sent: check if recalculation is needed/requested
14 // or not and switch to corresponding state
15 [last_cam_sent] (rm = rm_wait) & (want_rm) & (!end) ->
16 1 : (rm’ = rm_calc_bw); // recalculation
17 [last_cam_sent] (rm = rm_wait) & (!want_rm) & (!end)->
18 1 : (rm’ = rm_alloc_bw); // no recalculation
19 endmodule

Listing 1. Network Manager, PRISM Code

rm_init

rm_calc_bw

rm_alloc_bw

rm_wait

rm_end

[man_inter]

[bw_allocated]

[last_cam_sent]

[last_cam_sent]

[bw_allocated]

[end]

Fig. 2. Network Manager, MDP Representation

1) Network Manager: In all the three models, the network
manager behaves in the same way. The manager is imple-
mented as a module in PRISM, as shown in Listing 1 and the
corresponding MDP representation is shown in Figure 2. In the
code, rm is used to keep track of the network manager state.
The state rm_init indicates the initialization phase for the
network manager. The state rm_calc_bw corresponds to the
state when the network manager is computing the new vector
b and then the subsequent bandwidth assignment. The state
rm_alloc_bw indicates that the the allocation is being per-
formed (within the period). The state rm_wait corresponds to
the state when the manager is waiting to be invoked. Finally,
rm_end denotes the end of the execution (when the preset
maximum number of frames for the verification procedure
is reached). The labels indicate the transition names, so that
other modules can synchronize their transisitions. Specifically,
[man_inter] indicates that the network manager is inter-
vening to reallocate bandwidth. It has computed the bandwidth
and transitions to the state in which it allocates it. The figure
gives a visual representation of the same concepts. States
are represented as circles and transitions from one state to
another are represented by directional arrows. PRISM allows
for synchronization of multiple modules using labels, which
are indicated using square brackets. The black circle in the
rm_end state represents the fact that the state is a self-
absorbing state. Listing 1 contains two [bw_allocated]
transitions, to distinguish between the end state rm_end and
the wait state rm_wait.The guards of the two transitions are
different, therefore there is no non-determinism in the manager
MDP — it is always clear, depending on the state of the
system, which transition is going to be taken.

2) Camera – Deterministic Model: The first model we
introduce for the behavior of the cameras is a completely
deterministic model, constructed similarly to the one presented
in [33]. This model is our reference for comparison. It does

4

1 formula framesize = ... // compute frame size from equation (1)
2 formula update_q = ... // update the quality
3
4 module DeterministicCamera
5 // init: synchronization with manager on bandwidth allocation
6 [bw_allocated] (cam = cam_init) -> 1 : (cam’ = cam_calc_fr);
7 // entering computation of frame size, unlabeled transition
8 // for all the cameras except the last, labeled to indicate
9 // the end of the scheduling round

10 [- or last_cam_sent] (cam = cam_calc_fr) ->
11 1 : (cam’ = cam_wait) & (q’ = update_q) &
12 (s’= framesize);
13 // return to computation after all the cameras have sent
14 // cycling until the end of the allocation by the manager
15 [bw_allocated] (cam = cam_wait) -> 1 : (cam’ = cam_calc_fr);
16 endmodule

Listing 2. Camera Deterministic Model, PRISM Code

cam_init

cam_calc_fr

cam_wait

[bw_allocated]

[- or last_cam_sent]

[bw_allocated]

Fig. 3. Camera Deterministic Model

not model the disturbances, which is the feature we want to
introduce in this paper. The model consists of one network
manager module as shown in Figure 2 and Listing 1 and n
copies of a single camera model, depending on the number of
cameras in the network. Listing 2 shows the PRISM code and
Figure 3 shows the state space diagram of a single camera,
when modeled in the deterministic way.

The camera stays in the initial state cam_init until
the [bw_allocated] transition is taken by the network
manager. When the network manager computes the bandwidth
allocation for the cameras, the camera can take the transition
that moves it into the computation of the framesize of the
currently captured image. The formula update_q in the
PRISM code is here used as a compact notation for the
computation of the next quality level qi,w according to the
congestion window algorithm. The formula framesize is
used as a compact way of describing the computation of the
next framesize defined in Equation (1), with δsi,w set to zero.
The camera then transitions to the cam_wait state, where it
waits for all the cameras to finish their transmission. The last
camera module has a labelled transition [last_cam_sent]
to the wait state (all the other cameras have no label for
this transition), which allows us to synchronize with the
network manager’s actions. The behavior is repeated until a
maximum number of frames is transmitted by each camera in
the network, specified as a parameter at the model checking
level.

3) Camera – Probabilistic Model: The first alternative
that we propose to include disturbances with respect to the
deterministic behavior is the use of a probabilistic model. In
general, probabilities are a good tool to encode elements like
hardware failures. We can include probabilisties in our model
as shown in Figure 4 and in Listing 3. The (deterministic)
network manager code is unchanged. All the stochastics re-
sides in the capturing of the image. We would like to include
the disturbance δsi,w introduced in [33] – and shown in
Equation (1). With respect to prior work, however, it has been
shown that the disturbance acting on the frame size would

1 formula framesize = ... // compute frame size from equation (2)
2 formula framesize_disturbance = ... // with disturbance
3 formula update_q = ... // update the quality
4
5 module ProbabilisticCamera
6 // init: synchronization with manager on bandwidth allocation
7 [bw_allocated] (cam = cam_init) -> 1 : (cam’ = cam_calc_fr);
8 // entering computation of frame size, probabilistic
9 [- or last_cam_sent] (cam = cam_calc_fr) ->

10 0.7 : (cam’ = cam_wait) & (q’ = update_q) &
11 (s’= framesize) +
12 0.3 : (cam’ = cam_wait) & (q’ = update_q) &
13 (s’= framesize_disturbance);
14 // return to computation after all the cameras have sent
15 [bw_allocated] (cam = cam_wait) -> 1 : (cam’ = cam_calc_fr);
16 endmodule

Listing 3. Camera Probabilistic Model, PRISM Code

cam_init

cam_calc_fr

cam_wait

[bw_allocated]

[- or last_cam_sent]

0.3: s’ = framesize_disturbance

[- or last_cam_sent]

0.7: s’ = framesize

[bw_allocated]

Fig. 4. Camera Probabilistic Model

affect the camera quality as a multiplicative term [16]. Rather
than modeling the disturbance as shown in [33], we introduce
a term capturing unexpected quality variation δqi,w (which
is used for example to model different light conditions or
encoding capabilities).

Compared to the deterministic version, the transition that
links the cam_calc_fr state to the cam_wait can be taken
with two different effects. Once the bandwidth is determined,
different paths can be taken, modeling a stochastic disturbance.
In 70% of the cases there is no disturbance. On the contrary,
in the remaining 30% of the cases, the computation of the
frame size is carried out according to a different formula, that
includes the additional term δqi,w. More precisely, we use the
following formula:

si,w =

{
(0.7) 0.01 · qi,w · si,max

(0.3) 0.01 · (qi,w + δqi,w) · si,max
(2)

The first line in Equation (2) is assigned a probability of
0.7. This captures the behavior of the camera when it is
operating in its normal conditions. In this state, the relationship
between the quality qi,w and the frame size si,w is linear and
there is no disturbance. On the contrary, the second line is
assigned a probability of 0.3 and captures the behavior when
a disturbance occurs. Using a static multiplicative disturbance
(additive on the quality, δqi,w), we generate frame sizes of
higher values for the same input quality qi,w. The probabilities
can be tuned to model varying behaviors in the real world
and other alternative paths can be added to the model. The
specific values used for the disturbance terms can be obtained
via profiling as specified in [16], and the values we used were
found using the testbed developed for [33].

Clearly, the probabilistic choice added increases the com-
plexity of the model and the number of states that it contains,
which the model checker has to deal with. Experimental results
on the scalability of the probabilistic model are described in
Section IV-A.

4) Camera – Nondeterministic Model: Here we present an
alternative to the probabilistic model for including a distur-
bance: a nondeterministic model. Nondeterminism is present

5

1 formula framesize_disturbance = ... // from equation (3)
2 formula update_q = ... // update the quality
3
4 module NondeterministicCamera
5 [bw_allocated] (cam = cam_init) -> 1 : (cam’ = cam_calc_fr);
6 [- or last_cam_sent] (cam = cam_calc_fr) ->
7 1 : (cam’ = cam_wait) & (q’ = update_q) &
8 (s’= framesize_disturbance); // with disturbance
9 [bw_allocated] (cam = cam_wait) -> 1 : (cam’ = cam_calc_fr);

10 endmodule
11
12 module Environment
13 // generate a new disturbance as a nondeterministic choice
14 // between a set of values, and move to wait state
15 [bw_allocated] (env = env_wait) ->
16 1 : (env’ = env_calc_dist) & (dist’ = new_dist);
17 [] (env = env_calc_dist) -> 1 : (env’ = env_wait);
18 endmodule

Listing 4. Camera Nondeterministic Model, PRISM Code

cam_init

cam_calc_fr

cam_wait

[bw_allocated]

[- or last_cam_sent]

[bw_allocated]

(a) Camera

env_wait

env_calc_dist

[bw_allocated]

(b) Environment

Fig. 5. Camera Nondeterministic Model

in the vast majority of cyber-physical systems. Often, these
systems are composed of multiple possible outcomes, with
dependencies from other entities (in our case from the physical
environment). The MDP representation of model is presented
in Figure 5, and its PRISM code is shown in Listing 4. The
network manager is unchanged and the camera model is the
same as the deterministic one, with the only exception of the
frame size computation, that occurs according to the formula
that includes the disturbance.

si,w = 0.01 · (qi,w + δqi,w) · si,max (3)

We use Equation (3) to model the stochasticity of the image
capture. The equation is the same as the second line in
Equation (2), used in the probabilistic model. The difference
is that for each w frame of i camera, we can introduce a
random value for δqi,w (which we choose to be between -
20 and 20, using our implementation to find representative
values for the most common scenes). We specify alternative
paths with each of these paths corresponding to a disturbance
vector with an amount of disturbance to each of the cameras
(e.g., for three cameras we could select the disturbance vector
< δq1,1 = 10, δq2,1 = −5, δq3,1 = 0 > for the first frame, and
then the vector < δq1,2 = −10, δq2,1 = 5, δq3,1 = −5 > for
the second frame). This models the randomness in the physical
environment representing a random amount of noise affecting
the captured image. One of the paths here is < δq1,1 =
0, δq2,1 = 0, δq3,1 = 0 >. This corresponds to the steady
state behavior of the system when there are no disturbances
(similarly to the deterministic model).

The value of δqi,w is determined using another module
(named Environment) as shown in the PRISM listing. The
Environment module is synchronized using the same labels
as the manager and the camera module. The environment acts
for every frame collected by the cameras and can select among
nondeterministic alternatives for the disturbances, including
zeros (to resemble the deterministic behavior).

The inclusion of another module greatly increases the
number of states of the model, which poses significant limi-
tations for the model checker. The state explosion problem is
discussed in Section IV-A, that includes verification results.

C. Stochastic Games

PRISM-Games [10] extends PRISM incorporating the veri-
fication of competitive and collaborative behavior with SMGs
for nondeterministic models. Players of SMGs are in control
of choices that can be nondeterministic. Using PRISM-Games
we can investigate the behavior of our camera network and
network manager when the different entities collaborate with
one another to reach a common goal, or when they each have
a separate goal and are only concerned with that one.

In our system, there are naturally n + 1 players. The first
n players are the cameras. Each of them wants to maximize
the number of frames transmitted correctly (possibly with a
weight depending on the quality — the higher the quality, the
better). The last player is the network manager, who wants
to maximize the utilized bandwidth allocated to the cameras.
In a collaborative framework, the manager would allocate the
bandwidth fairly to all the cameras, and the cameras would use
the allocated bandwidth minimizing the effect of the stochastic
disturbance. In a competitive framework, the manager would
only try to maximize its own benefit and each camera would
do the same, irrespective of the others’ objective functions.

PRISM-Games allows to declare only two players, either
collaborating or competing with one another. This is however
not a limitation in this case, since all the objective functions for
the n cameras do not depend on each another and maximizing
one does not change the value of the others. We can therefore
declare one player as the manager and one player as the set
of cameras and compare the collaborative versus competitive
game, where they pursue their own objectives. Our results for
this comparison are discussed in Section IV-C.

D. Properties

This section covers the different properties that we can
verify on our system.

Models developed in PRISM can be augmented with re-
wards: real values associated with certain states or transitions
of the model. Listing 5 shows the rewards constructed. Reward
"rm_calls" awards a reward of 1 whenever the transition
corresponding to [man_inter] is taken. Similarly rewards
"cam_fr_dropped" and "cam_fr_sent" rewards 1
when a camera drops or sends a frame respectively. Finally
reward "cost" is a combination of values, penalizing each
dropped frames by 10 and each manager intervention by 1.

Listing 6 shows the properties that we use to evaluate
the three different MDP models: the deterministic one pre-
sented in Section III-B2, the probabilistic one presented in
Section III-B3, and the nondeterministic one discussed in
Section III-B4.The identifier R indicates a reward of the spec-
ified type. Rewards are used in PRISM to encode quantitative
verification. The term reward indicates a positive quantity,
but can be used to quantify costs as well [24]. For exam-
ple, R{"rm_calls"}max in Property MDP-1 indicates the

6

1 rewards "rm_calls"
2 [man_inter] true : 1; // +1 when manager intervenes
3 endrewards
4 rewards "frame_dropped"
5 [] cam = cam_fr_drop : 1; // +1 with every dropped frame
6 endrewards
7 rewards "frame_sent"
8 [] cam = cam_fr_sent : 1; // +1 with every sent frame
9 endrewards

10 rewards "cost"
11 [man_inter] true : 1; // +1 when manager intervenes
12 [] cam = cam_fr_drop : 10; // +10 with every dropped frame
13 endrewards

Listing 5. Reward Structures

1 R{"rm_calls"}max =? [F end] // MDP-1: Maximum interventions
2 R{"rm_calls"}min =? [F end] // MDP-2: Minimum interventions
3 R{"frames_dropped"}max =? [F end] // MDP-3 Maximum dropped
4 R{"frames_dropped"}min =? [F end] // MDP-4: Minimum dropped
5 R{"frames_sent"}max =? [F end] // MDP-5: Maximum frames sent
6 R{"frames_sent"}min =? [F end] // MDP-6: minimum frames sent
7 R{"cost"}min=? [F end] // MDP-7: Minimum operational cost

Listing 6. Properties of MDP models

maximum value of the reward associated with the (number of)
network manager calls. The identifier [F end] indicates that
the reward is calcualted when the end state is reached. The
end state is reached when a preset number of frames are sent
by the cameras.

Properties MDP-1 and MDP-2 are used to track the reward
"rm_calls" which is incremented every time the manager
changes the bandwidth allocation. Similarly the frames sent
and dropped are rewarded in properties MDP-3, MDP-4 and
MDP-5, MDP-6 respectively. Finally, property MDP-7 tracks
the operational cost for the system. Denoting with di the
number of dropped frames for camera i and with mc the
number of manager calls, the cost is defined as mc+10·

∑n
1 di,

which means it considers every dropped frame contribution to
the cost 10 and every manager call contribution to the cost 1.
We designed this cost to be multi-objective, as we believe that
skipping the transmission of frames incurs information loss,
but at the same time we would like to avoid frequent manager
interventions. The trade-off can be set to different values (for
example, manager intervention could be penalized more than
dropped frames in steady state). Section IV-A describes our
results.

Similarly, Listing 7 shows the properties that we use to
evaluate the cooperative vs competitive behavior of the system
using SMGs. The properties of Listing 6 are augmented to
indicate the dominant player the property refers to. This is
either the manager, the camera, or both (in the cooperative
scenario). The prepended label, delimited with <<>>, indicates
the player who maximizes or minimizes the current objective.
Section IV-C describes the results we obtained for these
properties.

IV. RESULTS

This section presents our verification results. First, we
analyze the scalability of the three proposed models. Then
we discuss the two settings of cooperating entities versus
competing ones (i.e., we show the results obtained when the
cameras and the manager collaborates to reach an objective
and when they pursue the objective on their own).

We wrote the code for the deterministic, probabilistic, and
nondeterministic models using the PRISM language and its

1 // SMG-1 Maximum interventions, decision maker: manager
2 <<manager>> R{"rm_calls"}max =? [F end]
3 // SMG-2 Minimum interventions, decision maker: manager
4 <<manager>> R{"rm_calls"}min =? [F end]
5 // SMG-3 Maximum interventions, decision maker: cameras
6 <<cameras>> R{"rm_calls"}max =? [F end]
7 // SMG-3 Minimum interventions, decision maker: cameras
8 <<cameras>> R{"rm_calls"}min =? [F end]
9 // SMG-5 Maximum interventions, cooperative

10 <<manager, cameras>> R{"rm_calls"}max =? [F end]
11 // SMG-6 Minimum interventions, cooperative
12 <<manager, cameras>> R{"rm_calls"}min =? [F end]
13 // SMG-7 Maximum frames dropped, manager
14 <<manager>> R{"frames_dropped"}max =? [F end]
15 // SMG-8 Minimum frames dropped, manager
16 <<manager>> R{"frames_dropped"}min =? [F end]
17 // SMG-9 Maximum frames dropped, cameras
18 <<cameras>> R{"frames_dropped"}max =? [F end]
19 // SMG-9 Minimum frames dropped, cameras
20 <<cameras>> R{"frames_dropped"}min =? [F end]
21 // SMG-11 Maximum frames dropped, cooperative
22 <<manager, cameras>> R{"frames_dropped"}max =? [F end]
23 // SMG-12 Maximum frames dropped, cooperative
24 <<manager, cameras>> R{"frames_dropped"}min =? [F end]
25 // SMG-13 Maximum frames sent, manager
26 <<manager>> R{"frames_sent"}max =? [F end]
27 // SMG-14 Minimum frames sent, manager
28 <<manager>> R{"frames_sent"}min =? [F end]
29 // SMG-15 Maximum frames sent, cameras
30 <<cameras>> R{"frames_sent"}max =? [F end]
31 // SMG-16 Minimum frames sent, cameras
32 <<cameras>> R{"frames_sent"}min =? [F end]
33 // SMG-17 Maximum frames sent, cooperative
34 <<manager, cameras>> R{"frames_sent"}max =? [F end]
35 // SMG-18 Minimum frames sent, cooperative
36 <<manager, cameras>> R{"frames_sent"}min =? [F end]
37 // SMG-19 Minimum operational cost, manager
38 <<manager>> R{"cost"}min =? [F end]
39 // SMG-20 Minimum operational cost, cameras
40 <<cameras>> R{"cost"}min =? [F end]
41 // SMG-21 Minimum operational cost, cooperative
42 <<manager, cameras>> R{"cost"}min =? [F end]

Listing 7. Properties of SMG models

model checker. We use the explicit engine for model checking,
since it is the only engine that handles SMGs. This means
that the model checker only uses explicit-state data structures,
storing models as sparse matrices. The explicit engine is also
a good fit for our requirements, since our models have a very
large state space, but only a fraction of the states is actually
reachable.

We selected a maximum number of 10 frames for our model
and a set H to 4Mb/s, which resembled the experimental
setup used in [33]. The other parameters (e.g., the period
of the resource manager) were set according to the previous
experiments [33]1. The models were built on a computer
with 128GB of RAM, that was allocated to PRISM. This is
necessary to build large models for model checking.

A. Scalability

Here, we evaluate how the three proposed models scale with
the number of cameras, i.e., with the size of the problem.
Table I shows the number of states for the PRISM models
for an increasing number of cameras n and Figure 6 shows
a visual representation of the same numbers (notice the y-
axis is logaritmic scaled). As expected from the discussion
in [33], the deterministic model scales exponentially with the
number of cameras in the system. The same is true for the
other models, although the model size greatly increases when
the model includes the effect of disturbances (with a similar
growth rate). Notice that increasing the number of frames used
for the evaluation would result in larger models, having the
same growth characteristics.

1The code for the experiments is publicly available at: https://
github.com/gauthamnayaks/camnetverification/tree/master/icac19

7

TABLE I
SCALABILITY ANALYSIS: STATE SPACE GROWTH

n Deterministic Probabilistic Nondeterministic
2 111 404 6908
3 277 246790 18190
4 771 11996 43915
5 2245 70652 148776
6 6651 – 491603
7 19833 – 1555671
8 59328 – 4786617

2 3 4 5 6 7 8

102.00

104.00

106.00

Number of cameras

N
um

be
r

of
st

at
es

(l
og

ar
itm

ic
)

Deterministic Probabilistic Nondeterministic

Fig. 6. Scalability Analysis: State Space Growth Plot

We were able to build the probabilistic model only for up
to five cameras. On the contrary, we were able to build and
verify the nondeterministic model for up to eight cameras in
the system. Even though the nondeterministic model has a
larger number of states with respect to the probabilistic one,
we noticed that the probabilistic model is interestingly difficult
to build. Also, in the case of three cameras, the resulting
probabilistic model has a large number of states. We initially
attributed this to a parameter conflict (a particularly difficult
set of parameters, that could cause larger fluctuations, i.e.,
the weights used in the network manager multiplied with
the update step would result in not changing the bandwidth
correctly and needing a lot of refinement). However, despite
a deeper exploration, we were not able to find the parameters
that create the conflict. The only insight that we have on
the problem is that PRISM handles the involved variables as
integer numbers. This could create problems in the initial step
(and potentially in subsequent ones), precisely in the 3 cameras
state, since allocating (equally) the 100% bandwidth to three
cameras results in a 1% unutilized bandwidth.

B. Property verification

In this section, we compare the results we obtain when we
verify the properties described in Section III-D (Listing 6).
The results are shown in Figure 7. The x-axis represents the
number of cameras in the model, n. To provide a comparison,
we use a maximum number of 8 cameras (but only 5 in
the probabilistic case since that is the biggest model we
could have). The y-axis shows the numbers obtained for the
properties. Specifically, we show the maximum and minimum
number of manager interventions in the top-left plot, the
maximum and minimum number of dropped frames in the
top-right plot, the maximum and minimum number of sent
frames in the bottom-left corner, and the minimum operational
cost in the bottom-right corner. For the deterministic case,

the maximum and minimum numbers always coincide, since
there is no disturbance in the model and there is no uncertain
path. This is the same even in the probabilistic case as the
probabilities are resolved deterministically.

Manager Interventions: The number of interventions of
the resource manager is upper bounded by 10, for our exam-
ple. In the probabilistic model, the worst case is computed
preserving the probability distribution (specified as having a
disturbance 30% of the times and not having any in 70% of
the cases), which explains the difference in the worst case
for the number of interventions. In fact, if a disturbance is
present in the first few frames, the camera controller more
aggressively regulates the quality, therefore not invoking the
network manager as much. The most interesting information
obtained from the figure, however, is the confidence band
given by the difference between the maximum and minimum
number of interventions in the nondeterministic case. The
nondeterministic model still captures the worst case, but also
allows us to determine that a specific disturbance configuration
could lead to a better outcome (i.e., it could lead to the network
manager intervening less). This means that in some cases, the
presence of different stochastic disturbances occurring in the
scenes recorded allows the system to converge to a satisfactory
quality set and bandwidth allocation quicker than expected.

Frames Dropped: A similar behavior can be observed
for the dropped frames. The deterministic model drops the
least amount of frames, since it does not require continuous
adaptation to handle disturbances. The best case (minimum
number of dropped frames) for the nondeterministic model
coincides with the deterministic model. This shows that our
model is accurate as the disturbances cause the drop in frames.
The band between the minimum and maximum values for
the nondeterministic model (more or less between 8 and 24
dropped frames in total for 8 cameras) gives us useful informa-
tion, allowing us to qualify the potential system behavior and
how disruptive disturbances can be. As system manufacturers,
we can then wonder if we need to tighten our bandwidth
requirements (including more monitors or increasing the net-
work bandwidth) or if we can be satisfied with the maximum
frame loss that we verify could happen. The probabilistic
model shows a peak for the model with three cameras, which
seems to be related to the anomaly with the number of states
(and contributes to our parameter interference hypothesis).

Frames Sent: The graph that depicts the number of sent
frames also illustrates the effect of disturbances. Again the
best case scenario (maximum sent frames) is the same for
the deterministic and nondeterministic model. This means that
the best case scenario is here achieved when no disturbance
is present. The presence of disturbances causes a different
minimum frames sent in the nondeterministic model. The non-
deterministic model shows that it captures better the interplay
between the physical dynamics, compared to its probabilistic
counterpart. In fact, the probabilistic counterpart forces the
probability distribution to respect the 30% and 70% rule also
in the best case, not capturing strange circumstances in which
this distribution — only empirically found — may not be
respected.

Minimum Cost: The final graph shows the minimum cost

8

2 3 4 5 6 7 8

6

8

10

M
an

ag
er

In
te

rv
en

tio
ns

Deterministic Probabilistic max Nondeterministic min Nondeterministic

2 3 4 5 6 7 8
0

10

20

Fr
am

es
D

ro
pp

ed

2 3 4 5 6 7 8

20

40

60

Number of Cameras

Fr
am

es
Se

nt

2 3 4 5 6 7 8

40

60

80

Number of Cameras

M
in

im
um

C
os

t

Fig. 7. Property verification for Deterministic, Probabilistic, and Nondeterministic Model

(where the cost is computed according to the formula intro-
duced in Section III-D, penalizing frame drops and manager
interventions). The nondeterministic model shows a potentially
lower cost, due to its ability to capture the more realistic
behavior of the camera system and corner cases (in this case,
the circumstances in which the disturbance is actually helpful
with respect to the bandwidth allocation and leads to faster
convergence).

C. Collaborative vs. Competitive

This section provides a deeper analysis of the nondetermin-
istic model presented in Section III-B4 (as it offers a realistic
representation of the disturbance and better scalability proper-
ties). We define the problem as a Stochastic Game, as shown
in Section III-C. We use PRISM-Games [10] to compare
the system’s behavior when the objective is to minimize or
maximize a property (among the ones defined in Section III-D,
Listing 7 — i.e., either minimizing the number of manager
interventions, or minimizing the number of dropped frames,
or maximizing the number of frames sent, or minimizing
the cost, defined as a linear combination of the number of
manager interventions and the dropped frames, and specifically
as mc + 10 ·

∑n
1 di, where mc is the number of manager

intervention and di is the number of frames dropped by the
i-th camera).

Figure 8 shows our results. As in the previous results, the
x-axis encodes the number of cameras, and on the y-axis
we represent the values obtained for the property we are
evaluating. The dotted line with square markers shows the
results obtained when the manager is the only player trying to
optimize the property. The dashed line with triangle markers
shows the value obtained when the player representing the set
of cameras is trying to optimize for the property on its own.
Finally, the solid lines with circles represent the results of the
collaborative game setting.

Manager Interventions: The leftmost plot in the top line
shows the achievable results in terms of minimization of
manager interventions. If the manager is the only player in
charge of the optimization, it can achieve a lower number of
interventions (penalizing other aspects of the system). On the

contrary, if the decision is collaboratively taken by players
or taken only by the cameras, the (worst case) number of
interventions cannot be minimized.

Frames Dropped: The network manager alone is not able
to minimize the (worst case) on the number of frames dropped.
However, both when the cameras are in charge of the decisions
and in the collaborative version, the number of frames dropped
can be lowered compared to the only action of the manager.

Frames Sent: The plot of the number of frames sent
is probably the most interesting one, and fully reveals the
nature of the trade-off between the decision makers. When
the number of camera grows, if the manager is the only one
in charge of the decision, the (best case) number of frames
sent is lower then if there is collaboration or if the cameras
are in charge of the decision. The figure also reveals that the
cameras alone are able to take better decisions that lead to
sending more frames, rather than the collaborative decision.
This shows that the problem is indeed very complex and the
interplay between the different control strategies (at the camera
level and at the network manager level) is difficult to design.
The players can exploit the different aspects of the problem
to obtain a less fair (a larger distance from the collaborative)
result.

Minimum Cost: Finally. the minimum cost that can be
achieved is the same when the cameras are deciding and when
there is collaboration, and higher if the network manager is
the only decision maker.

V. RELATED WORK

This section discusses related research. The paper deals
with different modeling and verification techniques for a self-
adaptive camera network. We classify the related work in two
categories. First, we discuss work related to our problem: self-
adaptive camera networks. Then, we describe work related to
the application of model checking to complex systems.

Self-adaptive video transmission has been given some atten-
tion in the past [39], [13], [32], [41], [38], [43], [6], leading
to alternative protocols and improvements. They typically
explore alternative encoding of redundant information within
a sequence of frames, paving the way for standards such as

9

2 3 4 5 6 7 8

6

8

10

M
an

ag
er

In
te

rv
en

tio
ns

Manager Cameras Collaboration (Manager + Cameras)

2 3 4 5 6 7 8
0

10

20

Fr
am

es
D

ro
pp

ed

2 3 4 5 6 7 8

20

40

60

Number of Cameras

Fr
am

es
Se

nt

2 3 4 5 6 7 8

100

200

Number of Cameras

M
in

im
um

C
os

t

Fig. 8. Cooperative vs. Competitive Optimization

MJPEG, JPEG200, MPEG-H and H.265. Specifically, self-
adaptive cameras adapt their streams to provisions from the
network [32], [31], [41], without considering network schedul-
ing. In the scheduling domain, [36] uses adaptive network
channels, supervised by a global network manager, to track
the effective bandwidth used by the cameras, but do not
include any camera stream adaptation. Our network is more
complicated due to the interplay of the two characteristics and
their (possibly) conflicting objectives (e.g., maximizing the
quality of the streams and minimizing allocation changes). Our
previous paper [33] does combine the adaptation strategy for
the cameras and the bandwidth allocation, verifying properties
of the overall system in absence of disturbances. In this
work, we improve on previous results including disturbance
management strategy and the relationship with the physical
environment the cameras record.

There has also been work done on temporal logic verifica-
tion using simulation [17]. This work deals with verification
of a continuous dynamical system using a finite number of
trajectories. In our case, we model the camera network as
a discrete system and verify the system as opposed to its
evolution.

We employ model checking [11] to verify desirable prop-
erties of the complex system composed of cameras and net-
work manager. We used the PRISM model checker [24]. In
the literature, PRISM has been used for the verification of
properties of a wide-variety of systems [23], among which
we find: randomized distributed algorithms [25], probabilistic
software [22], nontechnology designs [28], communication
protocols [15], self-adaptive software [4], security [2], anony-
mous protocols [35]. Specifically, we use Probabilistic Model
Checking (PMC). PMC was instrumental in the verification
of properties of a video streaming service in [27]. In this
work, high-fidelity simulations are abstracted into probabilistic
higher-level models for analysis. PMC is also employed for
verification of safety and timeliness properties in air traffic
control systems [19]. In contrast with these works, we study
bounded disturbances and focused on the cooperation or
competition of different entities in the network, using stochas-
tic games. For this, several models exist, like concurrent

games [34], [9], and partial-observing games [8], [7]. We
modeled our system as a turn-based game [14].

There also exist various case studies done to evaluate
different control and networked systems. Some of them are
microgrid management system, decision making for sensor
networks, reputation protocol for user-centeric networks [37],
UAV mission planning [18], pan-tilt zoom cameras [29], air-
craft power distribution [3] and self-adaptive architectures [5].
These work focused on strategy synthesis, whereas we con-
centrate on the verification of properties and reward/cost
optimization.

There has also been some work on stochastic analysis of
automotive systems [42]. This work focused more on the
timing analysis which we do not pursue in our work.

VI. CONCLUSION

This work focuses on the use of model checking in cyber-
physical systems. In particular, we have selected one problem,
the verification of properties of a bandwidth allocation scheme
for self adaptive cameras, and we studied the interplay between
the cyber and the physical part of the system. The changes
in the scenes the cameras record induce disturbances and
uncertainty. This physical element interacts with the cameras
adaptation strategy and the network manager bandwidth allo-
cation policy. We used model checking to verify properties
of the closed-loop system (the system in which all camera
controllers and the network bandwidth allocation are active
simultaneously) in the presence of disturbances.

We incurred into the scalability problem, and we discovered
that — for this specific problem — a nondeterministic model
is far more scalable and representative than a probabilistic
model. We wrote our models to be as scalable as possible,
containing as few labels and synchronization points as possible
and trying to reduce the number of resulting states. We also
made sure to represent the system as realistically as possible.
As a result, we were able to verify models up to 8 cameras
with nondeterministic transitions. We used these models to
study the difference between collaboration and competition,
and what happens when players are greedy. As a result, we

10

unveiled interesting trade-offs that are inherent in any adaptive
bandwidth allocation system.

REFERENCES

[1] L. Almeida, P. Pedreiras, J. Ferreira, M. Calha, J. A. Fonseca, R. Marau,
V. Silva, and E. Martins. Online QoS adaptation with the flexible time-
triggered (FTT) communication paradigm. In Handbook of Real-Time
and Embedded Systems, 2007.

[2] S. Basagiannis, P. Katsaros, A. Pombortsis, and N. Alexiou. Probabilistic
model checking for the quantification of dos security threats. Computers
& Security, 28(6):450 – 465, 2009.

[3] N. Basset, M. Kwiatkowska, U. Topcu, and C. Wiltsche. Strategy
synthesis for stochastic games with multiple long-run objectives. In
Tools and Algorithms for the Construction and Analysis of Systems,
pages 256–271, Berlin, Heidelberg, 2015.

[4] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola. Self-
adaptive software needs quantitative verification at runtime. Commun.
ACM, 55(9):69–77, Sept. 2012.

[5] J. Cámara, D. Garlan, B. Schmerl, and A. Pandey. Optimal planning
for architecture-based self-adaptation via model checking of stochastic
games. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, SAC ’15, pages 428–435, New York, NY, USA, 2015.

[6] D. Cao, T. Nguyen, and L. Nguyen. Improving the video transmission
quality over IP network. In 5th International Conference on Ubiquitous
and Future Networks, 2013.

[7] K. Chatterjee and L. Doyen. Partial-observation stochastic games: How
to win when belief fails. In 2012 27th Annual IEEE Symposium on
Logic in Computer Science, pages 175–184, June 2012.

[8] K. Chatterjee, L. Doyen, S. Nain, and M. Y. Vardi. The complexity of
partial-observation stochastic parity games with finite-memory strate-
gies. In Foundations of Software Science and Computation Structures,
pages 242–257, Berlin, Heidelberg, 2014.

[9] K. Chatterjee and R. Ibsen-Jensen. Qualitative analysis of concurrent
mean-payoff games. Inf. Comput., 242(C):2–24, June 2015.

[10] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. PRISM-
games: A model checker for stochastic multi-player games. In Proc. 19th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’13), volume 7795 of LNCS, pages 185–
191, 2013.

[11] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, editors.
Handbook of Model Checking. 2018.

[12] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani. Model Checking
and the State Explosion Problem, pages 1–30. Berlin, Heidelberg, 2012.

[13] A. Communication. White paper: Digital video compression: Review
of the methodologies and standards to use for video transmission and
storage, 2004.

[14] A. Condon. The complexity of stochastic games. Information and
Computation, 96(2):203 – 224, 1992.

[15] M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker. A formal anal-
ysis of bluetooth device discovery. International Journal on Software
Tools for Technology Transfer, 8(6):621–632, Nov 2006.

[16] V. Edpalm, A. Martins, K.-E. Årzén, and M. Maggio. Camera Networks
Dimensioning and Scheduling with Quasi Worst-Case Transmission
Time. In 30th Euromicro Conference on Real-Time Systems (ECRTS
2018), volume 106 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 17:1–17:22, Dagstuhl, Germany, 2018.

[17] G. E. Fainekos, A. Girard, and G. J. Pappas. Temporal logic verification
using simulation. In Formal Modeling and Analysis of Timed Systems,
pages 171–186, Berlin, Heidelberg, 2006.

[18] L. Feng, C. Wiltsche, L. Humphrey, and U. Topcu. Controller synthesis
for autonomous systems interacting with human operators. In Proceed-
ings of the ACM/IEEE Sixth International Conference on Cyber-Physical
Systems, ICCPS ’15, pages 70–79, New York, NY, USA, 2015.

[19] T. Hanh and D. Van Hung. Verification of an air-traffic control system
with probabilistic real-time model-checking. Technical report, UNU-
IIST United Nations University International Institute for Software
Technology, 2007.

[20] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Control
engineering for computing systems - industry experience and research
challenges. IEEE Control Systems Magazine, 25(6):56–68, Dec 2005.

[21] J. Heo and T. Abdelzaher. Adaptguard: Guarding adaptive systems
from instability. In Proceedings of the 6th International Conference on
Autonomic Computing, ICAC ’09, pages 77–86, New York, NY, USA,
2009. ACM.

[22] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. Abstraction
refinement for probabilistic software. In Verification, Model Checking,
and Abstract Interpretation, pages 182–197, Berlin, Heidelberg, 2009.

[23] M. Kwiatkowska. Model checking and strategy synthesis for stochastic
games: From theory to practice. In Proc. 43rd International Colloquium
on Automata, Languages, and Programming (ICALP 2016), 2016.

[24] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In Proc. 23rd International Conference
on Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages
585–591, 2011.

[25] M. Z. Kwiatkowska, G. Norman, and R. Segala. Automated verification
of a randomized distributed consensus protocol using cadence smv and
prism. In Proceedings of the 13th International Conference on Computer
Aided Verification, CAV ’01, pages 194–206, London, UK, UK, 2001.

[26] M. Maggio, E. Bini, G. Chasparis, and K.-E. Årzén. A game-theoretic
resource manager for rt applications. In 25th Euromicro Conference on
Real-Time Systems, 2013.

[27] T. Nagaoka, A. Ito, K. Okano, and S. Kusumoto. Qos analysis of real-
time distributed systems based on hybrid analysis of probabilistic model
checking technique and simulation. Transactions on Information and
Systems, E94.D(5), 2011.

[28] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla. Evaluat-
ing the reliability of nand multiplexing with prism. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
24(10):1629–1637, Oct 2005.

[29] N. Ozay, U. Topcu, R. M. Murray, and T. Wongpiromsarn. Distributed
synthesis of control protocols for smart camera networks. In 2011
IEEE/ACM Second International Conference on Cyber-Physical Sys-
tems, pages 45–54, April 2011.

[30] P. Pedreiras and L. Almeida. The flexible time-triggered (FTT)
paradigm: an approach to qos management in distributed real-time sys-
tems. In International Parallel and Distributed Processing Symposium,
2003.

[31] N. Ramos, D. Panigrahi, and S. Dey. Dynamic adaptation policies to
improve quality of service of real-time multimedia applications in IEEE
802.11e WLAN networks. Wirel. Netw., 13(4), 2007.

[32] B. Rinner and W. Wolf. An introduction to distributed smart cameras.
Proceedings of the IEEE, 96(10), 2008.

[33] G. N. Seetanadi, J. Cámara, L. Almeida, K. Årzén, and M. Maggio.
Event-driven bandwidth allocation with formal guarantees for camera
networks. In 2017 IEEE Real-Time Systems Symposium, RTSS 2017,
Paris, France, December 5-8, 2017, pages 243–254, 2017.

[34] L. S. Shapley. Stochastic games. Proceedings of the National Academy
of Sciences, 39(10):1095–1100, 1953.

[35] V. Shmatikov. Probabilistic analysis of anonymity. In Proceedings 15th
IEEE Computer Security Foundations Workshop. CSFW-15, pages 119–
128, June 2002.

[36] J. Silvestre-Blanes, L. Almeida, R. Marau, and P. Pedreiras. Online
QoS management for multimedia real-time transmission in industrial
networks. IEEE Transactions on Industrial Electronics, 58(3), 2011.

[37] A. Simaitis. Automatic Verification of Competitive Stochastic Systems.
PhD thesis, Department of Computer Science, University of Oxford,
2014.

[38] L. Toka, A. Lajtha, É. Hosszu, B. Formanek, D. Géhberger, and J. Tapol-
cai. A Resource-Aware and Time-Critical IoT framework. In IEEE
International Conference on Computer Communications INFOCOM,
May 2017.

[39] B. Vandalore, W. Feng, R. Jain, and S. Fahmy. A survey of application
layer techniques for adaptive streaming of multimedia. Real-Time
Imaging, 2001.

[40] S. Varma. Internet Congestion Control. San Francisco, CA, USA, 1st
edition, 2015.

[41] X. Wang, M. Chen, H. M. Huang, V. Subramonian, C. Lu, and C. D. Gill.
Control-based adaptive middleware for real-time image transmission
over bandwidth-constrained networks. IEEE Transactions on Parallel
and Distributed Systems, 19(6), 2008.

[42] H. Zeng, M. D. Natale, P. Giusto, and A. Sangiovanni-Vincentelli.
Stochastic analysis of can-based real-time automotive systems. IEEE
Transactions on Industrial Informatics, 5(4):388–401, Nov 2009.

[43] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson, and S. Banerjee.
The design and implementation of a wireless video surveillance system.
In Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, MobiCom ’15, pages 426–438, New York,
NY, USA, 2015.

