
Adaptive Routing with Guaranteed Delay Bounds using Safe
Reinforcement Learning

Gautham Nayak Seetanadi
Department of Automatic Control

Lund University
Lund, Sweden

gautham@control.lth.se

Karl-Erik Årzén
Department of Automatic Control

Lund University
Lund, Sweden

karlerik@control.lth.se

Martina Maggio
Department of Automatic Control

Lund University
Lund, Sweden

martina@control.lth.se

ABSTRACT
Time-critical networks require strict delay bounds on the transmis-
sion time of packets from source to destination. Routes for trans-
missions are usually statically determined, using knowledge about
worst-case transmission times between nodes. This is generally a
conservative method, that guarantees transmission times but does
not provide any optimization for the typical case. In real networks,
the typical delays vary from those considered during static route
planning. The challenge in such a scenario is to minimize the total
delay from a source to a destination node, while adhering to the
timing constraints. For known typical and worst-case delays, an
algorithm was presented to (statically) determine the policy to be
followed during the packet transmission in terms of edge choices.

In this paper we relax the assumption of knowing the typical
delay, and we assume only worst-case bounds are available. We
present a reinforcement learning solution to obtain optimal routing
paths from a source to a destination when the typical transmission
time is stochastic and unknown. Our reinforcement learning policy
is based on the observation of the state-space during each packet
transmission and on adaptation for future packets to congestion
and unpredictable circumstances in the network. We ensure that
our policy only makes safe routing decisions, thus never violating
pre-determined timing constraints. We conduct experiments to
evaluate the routing in a congested network and in a network where
the typical delays have a large variance. Finally, we analyze the
application of the algorithm to large randomly generated networks.
12

ACM Reference Format:
Gautham Nayak Seetanadi, Karl-Erik Årzén, and Martina Maggio. 2019.
Adaptive Routing with Guaranteed Delay Bounds using Safe Reinforcement
Learning . In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1https://github.com/AdaptiveRouting-using-RL/AdaptiveRoutingUsingRL
2https://www.youtube.com/channel/UCE6pdp_0ciXB-fKcH22Mbyg/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
This paper describes an application of reinforcement learning to the
problem of routing in networks where each edge can be represented
by a very conservative upper bound on the delay to traverse it, but
the typical delay experienced when traversing edges can differ from
its upper bound.

Context.A recent paper [3] introduced the problem of determining
routes in graphs in which the delays across edges are characterized
by both conservative upper bounds and typical values. The problem
solved in the paper is to determine a route that from an initial source
node i traverses edges of the graph and reaches a destination node
t minimizing the delay under typical circumstances and preserving
guarantees of not exceeding a total budget for the transmission,
denoted with DF . Compared to static routing, in which a decision
on the entire route that the transmitted packet should follow, is
taken prior to setting out from the source, the paper introduces
adaptive routing, in which the decision on which edge to traverse
next in the graph is taken online, based on information about the
elapsed transmission time. Adaptive routing is in general capable
of achieving smaller typical delays compared to static routing. This
is because adaptive routing uses knowledge of the delay that was
experienced across already traversed edges to aid future decisions.

The adaptive routing technique presented in [3] is based on
the construction of tables that at each vertex determine which
outgoing edge should be taken for intervals of experienced delays.
In the presented solution, these tables are built once and then the
complexity of selecting the outgoing edge from the current vertex
only depends on the number of rows that each of these tables has,
which in turn depends on the topology of the network and on the
number of potential time intervals.

In our work, we use safe reinforcement learning to combine
optimal path finding with safe state-space exploration. This reduces
the size of the tables stored at each vertex. The de-centralized
approach allows each vertex to make routing decisions irrespective
of the future delays while respecting end-to-end delay constraints.

Notation. In the remainder of this paper, we use the following
notation. We consider a graph G, where the vertices represent
nodes and the edges represent a direct path between two nodes. We
denote withV the set of vertices, and with E the set of edges of
G. We use the notation e : (x → y) to indicate edge e , connecting
node x with node y. Each edge is characterized by two numbers, a
worst-case transmission time cWxy and a typical experienced delay
cTxy , dropping the arrow for simplicity. We use cxt to denote the
minimum worst case delay from the node x to the destination t .

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/AdaptiveRouting-using-RL/AdaptiveRoutingUsingRL
https://www.youtube.com/channel/UCE6pdp_0ciXB-fKcH22Mbyg/
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Problem Statement.Our problem is to determine a policy to route
messages from a source vertex i ∈ V to a destination vertex t ∈ V ,
to minimize (typical) transmission time for the message, and ensure
that the total delay experienced by the message, τ does not exceed
a specified final deadline value, DF , τ ≤ DF . We aim at solving
this problem in a de-centralised way despite changes in the typical
experienced delays that can happen during run-time.

Contribution. In this paper, we argue that estimates of typical
delays are unlikely to be available prior to exploration of the net-
work behavior and these typical delays are in general time-varying.
To address this problem in adaptive network, we develop an algo-
rithm based on reinforcement learning (RL) to automatically (and
safely) perform adaptive routing. The complexity of computing
the outgoing edge for each vertex only depends on the number of
outgoing edges from the vertex. In general, this does not exceed
the complexity of the adaptive routing technique proposed in [3],
where tables could have repeated entries (the same outgoing edge
can be selected for different intervals of experienced delay).

Our proposal automatically adjusts to events happening in the
network (like a link suddenly becoming less reliable or congested).
In this paperwe show that the policy identified by the reinforcement
learning algorithm exposes stochastic convergence to the optimal
policy identified by the algorithm presented in [3] when typical
delays are experienced. We also show that when typical delays
are represented by probability distributions the policy learns to
take the variance of the delays into account. Finally we show that
our algorithm works to minimize transmission times even in large
networks.

Compared to [3], we show that our work has low computational
and storage complexity while improving network adaptation to
time-varying typical delays. Compared to classical reinforcement
learning (RL), our work guarantees safety bounds. We show that
with proper domain knowledge, powerful reinforcement learning
techniques can be used for time critical real-time applications.

Paper Organization. The remainder of this paper is organized
as follows. In Section 2 we present our algorithm, explaining the
necessary background on reinforcement learning techniques and
our choices. Section 3 discusses an experimental evaluation showing
the shortcomings of previous contributions when typical delays are
not fixed and how our algorithm overcomes them. We also show
that the identified policy in our case stochastically converges to
the optimal routing technique proposed in [3]. Section 4 discusses
related work and Section 5 concludes the paper.

2 ALGORITHM
As in previous work [3], we distinguish between a pre-processing
phase and a run-time phase. The pre-processing phase is used for
the definition of the safe bounds, i.e., to ensure that information
about the worst-case paths is propagated to each node. The run-
time phase is used for the execution of the reinforcement learning
algorithm [16]. During run-time the system explores safe routes in
order to build and update a policy that determines the best action
to take depending on the currently experienced packet delay.

2.1 Pre-processing phase
The aim of the pre-processing phase is to determine the possible
worst-case delays experienced by a packet in the network. More
precisely, given an edge e : (x → y), we need to compute a safe
bound for the worst-case delay to the destination t experienced by
a packet that exits x via e . This can be done simply by determining
the minimumworst-case delay to the destination from vertexy, cyt ,
and then adding the worst-case delay of the edge e , cWxy . Assuming
that the worst-case delays are positive numbers, we can simply
use Dijkstra’s shortest path algorithm [6, 12] to determine these
values. This gives us the delay bound for which transmission can
be guaranteed for each edge.

Figure 1 shows an example3 of a network and the corresponding
generated state space S. On the top left side, we show the network
and the delays over each edge. The typical delays, cTxy are denoted
in blue and the the worst-case delays, cWxy are shown in red. Below
that we show the network computed by the application of the
Dijkstra’s shortest path algorithm for each edge. The worst-case
delay to the destination t over each edge is shown in green. On the
right side, we show the state space. For clarity, the figure does not
display the edges between nodes.

We argue that this pre-processing phase is necessary regardless
of the choice of run-time algorithm, to determine safe bounds for
the network and avoid choosing an edge that may lead to violation
of the worst-case delay constraint.

2.2 Run-time phase
During the run-time phase, a policy to select a path to send a packet
from origin i to destination t is determined. This is accomplished
using reinforcement learning. In particular, we model our problem
using a Markov Decision Process (MDP).

An MDP is a 4-tuple (S,A, P ,R), where S is a set of finite states,
A is a set of actions, P : (s,a, s ′) → {p ∈ R | 0 ≤ p ≤ 1} is a
function that encodes the probability of transitioning from state
s to state s ′ as a result of an action a, and R : (s,a, s ′) → N is
a function that encodes the reward received when the choice of
action a determines a transition from state s to state s ′. We use
actions to encode the selection of an outgoing edge from a vertex.

State Space. In our state, we encode both the current vertex we
are in and the elapsed time from the beginning of the packet trans-
mission (in time units). The set of possible states S is then the
Cartesian product between the set of vertices V and the set of
natural numbers that are less than the deadline D. Denoting with
N the set of integer values that satisfy the deadline constraint, i.e.,
N = {n ∈ N | 0 ≤ n ≤ D} then the set of possible states is

S = V × N = {(v,n) | v ∈ V ∧ n ∈ N }.

We use the compact notation vn to denote the state (v,n).
In the graph from figure 1, the initial source node i is connected

to the destination node t with an edge having typical transmission
time 12 (in blue) and worst-case transmission time 25 (in red). Alter-
natively, node i is connected to node x with a typical transmission

3The example is based on the presentation of [3], where it was used to illustrate the
problem.

2

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

i

x y

z

t

20

20

10

25

10

30

15

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i13

i14

i15

i16

i17

i18

i19

i20

i21

i22

i23

i24

i25

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16

y17

y18

y19

y20

y21

y22

y23

y24

y25

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

z16

z17

z18

z19

z20

z21

z22

z23

z24

z25

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

t21

t22

t23

t24

t25

Figure 1: Example of graph and corresponding state space
for the reinforcement learning problem formulation.

time of 4 time units and a maximum delay of 10 time units. The
maximum admissible delay DF is 25 time units.

On top of the state space, we want to enforce the constraint that
we only explore safe paths, i.e., paths that cannot lead to a violation
of the worst-case transmission time requirement DF . For example,
in node x choosing the edge (x → t) leads us to the destination
node in 10 time units in the worst case, choosing the edge (x → y)
leads us to the destination in 20 time units in the worst case, and
choosing (x → z) has a worst case delay of 30 time units. Therefore,
it is not safe in the example to be in state x20, as there is no path to
the destination that allows us to certainly reach t in less than DF
time units. We mark the unsafe states in red.

Finally, not all the nodes of the state space S are reachable. For
example, node t0 is clearly not reachable as there is no way to
cross the path from the source node to the destination node in zero
time. However, node t1 is potentially reachable from the source
when the edge (i → t) is chosen, if the experienced delay is one
time unit. Furthermore, we assume that the packets are not stalled,

which means for example that node i1 is not reachable. We mark
the unreachable nodes with orange in Figure 1.

There are still some edges that we should eliminate among the
choices. For example, if we are in state x10, with DF = 25, we need
to impede the choice of the edge (x → y), as the worst case delay
for the single possible path is higher than the 15 time units that are
left. We do this by limiting the actions that the policy can choose
in each state.

Reinforcement Learning. Once we limit the set of possible ac-
tions to ensure we will meet the worst case deadline, we use a
reinforcement learning policy to decide which outgoing edge –
action a ∈ A – to take from a state s = vn . Generally speaking,
decisions based on reinforcement learning are constructed using
feedback to reward successful actions taken to explore the state
space [16]. This decision making process, or policy, leads to a for-
mal definition of the value of being in the current state and how to
select the action that is taken in each state. The goal of this decision
making process is to take optimal actions so as to maximize the
reward obtained. Using the reinforcement learning terminology,
we denote the transmission of a message from source to destination
with the word episode. We also define the reward received in each
state as the total amount of time saved while traversing the path to
the destination. This reward is calculated at the end of each episode
and then propagated to the other nodes.

TD Learning. A popular reinforcement algorithm is the Temporal-
Difference (TD) learning [16] algorithm. TD learning gained popu-
larity in TD-Gammon, a program that learned to play backgammon
at the level of expert human players [18].

It is a model-free learning method which learns by sampling
the environment and determines an estimate of how good it is
for the algorithm to perform an action from a state, i.e., a value
function taking action a in state s , usually identified asQ (s,a). This
learning method is coupled with an exploration algorithm, which
in our case is the ε-greedy algorithm. Similar to Monte-Carlo (MC)
methods, TD learning samples the environment and learns from it,
by updating the value function.WhileMCmethods update the value
Q (s) of each state s in the current episode at the conclusion of the
episode, TD learning adjusts its estimate to match later predictions
about the future before the final outcome is known.

Using MC would be impractical for our algorithm as it would
generate a lot of messages in the network to transmit reward in-
formation at the conclusion of the message transmission. On the
contrary, the one step TD algorithm allows us to make routing deci-
sion and value iteration based only onQ (s,a) andQ (s ′,a′), i.e., the
Q-value for the current and next state. The next state Q-value can be
appended to the acknowledgement of the reception of a message,
therefore making this choice practical from an implementation
standpoint. The value update policy is computed as

Q (s,a) = Q (s,a) + α · (R +max(γ Q (s ′,a′)) −Q (s,a)) (1)

where s and s ′ are the current and next states respectively, a′ is
the action with the highest Q-value for state s ′, α is the learning
rate with which we overwrite old information with new, R is the
reward obtained during the transition from state s to state s ′, and
γ is the discount factor that captures uncertainty of Q (s ′,a′).

3

Exploration Policy. ε-greedy exploration ensures that the system
chooses the edge that was identified as best for the transmission of
most packets while at the same time exploring other edges in search
of a path that has a higher reward. The ε-greedy policy chooses
one action from the vector of feasible actions A. Specifically this
action a is either the one that has the maximum value of Q (s,a) or
a random action that explores the state space. The policy explores
the state space with a probability ε and take the action with the
maximum estimated rewardwith a probability of (1−ε). In principle,
ε is chosen to be a small number, such that most of the time the
policy exploits knowledge about the current state. The continuous
exploration of the state space, ensures (in a probabilistic sense) the
detection of paths with higher rewards and resilience to changes.

In order to guarantee that the total transmission time never
violates the set deadline DF , we modify the ε-greedy policy to per-
form safe reinforcement learning. Safe reinforcement learning is
the process of learning actions that maximize the rewards while
ensuring reasonable system performance and/or respect safety con-
straint [9]. Safe reinforcement learning can be broadly divided into
two categories:
• Modified Optimization Criterion: In this case, the concept of
risk is introduced into the optimization process. The policy is
determined with explicit knowledge about the risk involved
in taking specific actions.
• Safe Exploration Process: In this second case, the exploration
process is modified to avoid exploratory actions that could
have harmful consequences. This is the alternative taken
in this work, where we impede certain actions from being
taken.

In previous work, this knowledge has been used mostly in scenar-
ios where a human teacher demonstrates a safe path [7, 15]. In
this paper, the modified ε-greedy policy ensures a safe exploration
process through incorporating external knowledge obtained in the
pre-processing phase. The exploration policy then allows for small
explorations that deviate from the optimal policy.

A popular variation of this exploration algorithm is the decaying
ε-greedy. The decaying algorithm reduces ϵ , thus minimizing the
exploration during routing of later packets. This reduces the delay
over the network as most of the exploration is required during
the transmission of the first few packets. Once the value of most
of state action pairs Q (s,a) of the MDP are known, the need for
exploration reduces. Tuning the decay function according to the
size of the network is considered out of scope of this paper.

The paper investigates both exploration policies in Section 3.
We use the decaying ε-greedy policy in Experiment 3.1 as a static
network is considered. In the following experiments, we use the
non-decay ε-greedy due to probabilistic distributions of delays and
dynamic networks with congestion.

2.3 Algorithm
Algorithms 1, 2 and 3 show the pseudo-code of our algorithm. Al-
gorithm 1 is executed globally to obtain worst-case transmission
times cit during network initialization and reconfiguration(node
addition or removal). Algorithm 2 executed at the node can either
be run globally or at a local level depending upon the network con-
figuration. Monte-Carlo methods require knowledge of the entire

Algorithm 1 Pre-Processing:

1: for each node u do
2: for each edge (u → v) do
3: // Delay bounds as described in Section 2.1
4: cuv = cWuv + min(cvt)
5: // Initialise the Q values to 0
6: Q (u,v) = 0

state-space and thus are practical for small networks. Algorithm 2
describes one step TD-learning making routing decision and value
iteration based only on Q (s,a) and Q (s ′,a′), i.e., the Q-value for
the current and next state allowing for distributed decision making.

Consider the routing problem from source i to destination t . As
described above, the algorithm is split into pre-processing and run-
time phases. The pre-processing phase calculates the shortest path
to the destination using Dijkstra’s algorithm [6]. The minimum
worst case transmission time cit to the destination t over the edge
(i → x) is obtained by adding the worst case transmission time
over the edge cWix and the worst case transmission time cvt from v
to destination t . The values of all state-action pairs are initialized
to 0.

Algorithm 2 is run at each node u when a packet arrives. If u =
source node, the deadline Du = DF is set to the final deadline. For
the other nodes, the deadline is determined online. For each edge
(u → v) from u, if cuv > Du , the edge is infeasible and P (u |v) = 0.
This ensures that deadlines are never violated. From the feasible
edges (F), the edge that corresponds to the action with maximum
value, v such that Q (u,v∗) = max(Q (u,v ∈ F)) has the highest
probability P (u |v∗) = (1 − ϵ). The remaining feasible edges are
assigned P (u |v \ {v∗}) = ϵ/(size(F − 1)). The next node is decided
according to the probability P . The actual transmission time over
the edge is δux . This is subtracted from the deadline for the node
Du to obtain Dx , the deadline for the next node x . No reward is
awarded in the middle of the episode and the value of the state
action pair, Q (u,v) is calculated using (1).

The reward R after each edge traversal is obtained as shown
in Algorithm 3. If v , t , the destination is not reached and the
episode continues by taking the node v as the current node. If
v = t , the episode is complete. The reward, R is calculated as
R = DF − δit where DF is the pre-determined deadline and δit is
the total transmission delay over the whole path from source i to
destination t .

The back-propagation of calculated reward is inherent in the
value iteration as shown in Equation 1. As seen, the value iteration
is dependent on the maximumQ-value of the next node. This can be
sent to the sending node after each successful packet transmission
depending on the protocol used. For example, If Transmission con-
trol protocol(TCP) is used, the acknowledgement messages could be
extended to include the Q-value. In our implementation, we simply
transmit the value back to the origin node.

2.4 An Example Episode
Using the same example as above with deadline DF = 25, we be-
gin the episode at node i . The feasible available edges are [(i →
x), (i → t)] as they both satisfy the constraint cit ≤ Di where Di

4

Algorithm 2 Node Logic (u)

1: for Every packet do
2: if u = source node i then
3: Du = DF // Initialise the deadline
4: δit = 0 // Initialise total delay for packet = 0
5: for each edge (u → v) do
6: if cuv > Du then // Edge is infeasible
7: P (u |v) = 0
8: else if Q (u,v) =max (Q (u,a ∈ A)) then
9: P (u |v) = (1 − ϵ)
10: else
11: P (u |v) = ϵ/(size (F − 1))
12: Choose edge (u → v) with P
13: Observe δuv
14: δit += δuv
15: Dv = Du − δuv
16: R = Environment Reward Function(v,δit)
17: Q (u,v) = Value iteration from Equation (1)
18: if v = t then
19: DONE

Algorithm 3 Environment Reward Function(v,δit)
1: Assigns the reward at the end of transmission
2: if v = t then
3: R = DF − δit
4: else
5: R = 0

is the deadline at node i . As this is the first episode, there exists
no information of the value of the two edges. Both edges have the
same probability and one of them is chosen at random. If the edge
chosen is (i → x) and the observed transmission time is δix = 4
then the new deadline Dx is Di − δix = 21. The feasible edges from
node x are [(x → y), (x → t)]. The value of the state action pair
Q (i,x) is calculated using Equation (1). As the value at the next
node x is 0 due to no prior information, another random selection
of the edge is made. If (x → t) is traversed with δxt = 8, the desti-
nation node is reached and the episode is terminated. The reward
for the state is calculated as R = DF − δit where δit is the total
transmission time of the packet. During the following transmis-
sions, the algorithm makes use of this state-action value function
to make a more informed decision. As we use ϵ-greedy algorithm
for exploration, all state-action pairs are eventually explored and
their value is calculated. This combination of TD learning and safe
exploration leads to small transmission times while respecting time
constraints.

3 EVALUATION
In this section, we will discuss the behavior and performance of
the algorithm presented in Section 2, by applying it to the example
shown in Figure 1 in different network conditions and to large-scale
networks.

We build the network using Python and the NetworkX [10] pack-
age. NetworkX allows us to build Directed Acyclic Graphs (DAGs)

and to provide information about nodes and edges of those DAGs.
In building the example of Figure 1, we annotate the graph using
for each edge (x → y) the worst case delay as a weight. We also
include the typical delay cTxy for each edge as an annotation in the
graph, but we hide this information from the algorithm and only
use it to determine the edge traversing time. The pre-processing
phase calculates the worst case delay from each node to the destina-
tion. This initial phase is executed once during the creation of the
network. Once the network is created, our reinforcement algorithm
is executed for every packet.

The experiment presented in Section 3.1 shows a comparison
between the results obtained with our algorithm and the optimal
choices. It highlights that the transmission times experienced using
our algorithm converge to the optimal numbers obtained with the
technique presented in [3].

However, the algorithm presented in [3] does not adapt to on-
line changes. We show how our algorithm behaves in this case in
the experiment presented in Section 3.2. In this case, a link gets
congested, and its traversal time then becomes equal to the worst
case. We show how our algorithm is able to dynamically adapt and
converge to a new optimal policy.

However, the real contribution of this paper is shown when
edge traversal times are unknown and vary over time. We show
this in the experiments presented in Section 3.3. For the rest of
the experiments, we assume that the edges traversal times behave
according to a given probability distribution. This is similar to a
real network where the delay for a packet is varied at every time
instance. In particular, we investigate both a truncated normal
distribution and a uniform distribution. With truncated normal
distribution we mean a probability distribution that is a normal
distribution, but is cut at zero (to avoid negative traversal times)
and at the worst case traversal times (to ensure that the constraint
is satisfied).

Finally the experiment presented in Section 3.5 shows the scal-
ability of our algorithm and how it behaves when applied to an
networks with an increased number of nodes.

3.1 Experiment 1: Convergence to the Optimal
Route

To check that our reinforcement algorithm identifies the optimal
route from the source to the destination node, we compare the
length of optimal path determined by the RL algorithm after 1000
episodes, with the traversal time of the optimal path computed
using the algorithm from [3]. Both algorithms are applied to the
network shown in Figure 1.

The delays for traversing an edge are set to the typical delays,
thus giving us the possibility to verify convergence in nominal con-
ditions. For the RL, the delay to traverse an edge becomes available
only after the destination node of the edge is reached.

Table 1 shows the results we obtained for different values of DF .
When DF = 15, it is impossible to find a solution that guarantees
the worst case transmission delay, and both our algorithm and
the optimal one presented in [3] are able to identify that using
Dijkstra’s algorithm on the worst case transmission times. For the
other deadlines, we show the delays obtained with the optimal
algorithm and the average delay obtained in 1000 transmissions

5

0
10
20
30
40

Deadline DF = 20

Classical RL Rapid Routing[1] Safe RL

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

Tr
an
sm

is
si
on

Ti
m
e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 200 400
0
10
20
30
40

Packet / Episode No.

Deadline DF = 40

(a) No Variance

Deadline DF = 20

Deadline DF = 25

Deadline DF = 30

Deadline DF = 35

0 200 400
Packet / Episode No.

Deadline DF = 40

(b) Congested Network

Figure 2: Smoothed Total Delay for Experiments 3.1 and 3.2.

using our algorithm. In all cases, the delays experienced by packets
using algorithm are very close to the optimal delays. The slight
variations are due to the exploration that is built in our algorithm,
and specifically to the exploring nature of the ϵ-greedy policy.
For all the values of DF and in all episodes, the deadline is never
violated.

Figure 2(a) shows the evolution of the transmission delays as
the number of packets sent increases. Rapid routing[3] and safe RL
converge to the same path and experience the similar transmission

Table 1: Optimal Path for Different Deadlines

DF Optimal Path Delays [3] Average Delays (1000 episodes)
15 Infeasible - -
20 {i,x,t} 14 14
25 {i,x,y,t} 10 10.24
30 {i,x,y,t} 10 10.22
35 {i,x,z,t} 6 6.64
40 {i,x,z,t} 6 6.55

times. Classical RL is consistently able to have low transmission
times at the expense of taking unsafe paths. This causes deadline
violations in networks with varying transmission times are seen in
section 3.4.

Except for DF = 20, in all the other plots there is an initial
exploration phase, in which the safe RL algorithm is exploring
alternative routes, to find the optimal path. There is no exploration
whenD = 20 as the only feasible path in the network is (i → x → t).
Therefore the total path delay is always equal to 14. As mentioned
before, the algorithm explores new routes with a probability that
decays over time, which shows how the algorithm settles for a
given route in the static case.

3.2 Experiment 2: Adaptation to Edge
Congestion

In Experiment 2 we analyze the capability of the algorithm to adapt
to new circumstances. In this specific case, we see how the algorithm
reacts to the congestion of one of the edges. In the network we used
before, we artificially introduce congestion on the edge (i → x).
The delay δix to traverse this edge increases from 4 to 10 time units,
after the transmission of 40 packets. For the rest of the experiment,
this edge remains congested.

Figure 2(b) shows the transmission times for different deadlines
DF . Due to the congestion, there is a need to adapt.

Both classical and safe RL adapt to the congestion and take a
different path to the destination. For DF = 20, classical RL again
chooses a path that violates safety guarantees. Rapid Routing is at a
disadvantage as the routing tables generated in the pre-processing
stage are not sufficient to ensure adaptation. The delay increases
(see the values the algorithm converges to compared to the values
shown in Figure 2) and the optimal path changes. The congested
edge is the first edge traversed for all previously determined optimal
paths, therefore the algorithm has to determine if there is a better
path using exploration. Eventually, the rewards are propagated and
the algorithm adapts. In all cases except for DF = 20, the algorithm
converges to the path (i → t) with a total delay of 12. In the case
of DF = 20, the only feasible path is (i → x → t) and the total
transmission time on the path increases from 14 to 20 due to the
experienced congestion.

The ability to adapt to current conditions is one of the motiva-
tions for using our algorithm rather than a static adaptive choice.

3.3 Experiment 3: Probabilistic Traversal
Times

In this section, we discuss the convergence of our algorithm when
the delay times for transmitting over the edges (x → y) are random
variables δxy drawn from probability distributions. In this exper-
iment we model the typical delay times using truncated normal
and uniform distributions. Figure 3 shows the total path delays
when the traversal time for an edge is distributed as a truncated
normal distribution with mean value cTxy and different variance
values. Each column in the figure shows a different value of DF
and each row a different variance, from 1 to 5. We denote the used
probability distribution as truncated normal, because we cut the

6

0
10
20
30
40

DF = 20 DF = 25

Variance = 1

DF = 30 DF = 35 DF = 40

0
10
20
30
40 Variance = 2

0
10
20
30
40

Tr
an
sm

is
si
on

Ti
m
e

Variance = 3

0
10
20
30
40 Variance = 4

0 1000
0
10
20
30
40

0 1000 0 1000
Packet / Episode No.

Variance = 5

0 1000 0 1000

Figure 3: Transmission Time with Truncated Normally Distributed Edge Traversing Times.

Table 2: Average Delays(1000 Episodes) in Experiments 3.1, 3.2, and 3.3

DF No Variance Congested Network Truncated Normal Distribution Uniform Distribution around cT Uniform Distribution [0, cW]
20 14.00 19.76 [12.80, 12.26, 12.02] [13, 12.6, 12.49] 9.14
25 10.30 12.42 [9.15, 10.20 ,10.63] [13.01, 12.69, 12.49] 9.84
30 10.27 12.17 [8.92, 10.01, 10.23] [8.89, 9.04, 10.62] 10.28
35 06.94 12.42 [5.81, 7.15, 8.60] [5.51, 5.95, 6.95] 9.98
40 06.84 12.32 [6.08, 6.945, 8.556] [5.59, 5.81, 6.42] 10.12

probability distribution below 0 and above the worst case cWxy to en-
sure that the traversal times respect the constraints of our problem
(0 ≤ δxy ≤ CWxy).

As the variance increases, the total delay also increases on av-
erage, as expected. One take away message is the deadline DF is
never violated, showing that the algorithm behaves correctly. Also,
when the variance increases, different paths are explored as the
Q values for the nodes tend to be closer to one another – rather
than experiencing one best path, the variance blurs the differences
between the paths and makes it more important and rewarding to
distribute packets on different edges. In particular, looking at the
case with DF = 35, the case with variance 1 and 2 converges (pri-
marily) to one specific path. The case with variance 3 and 4 explore
different paths and reach different conclusions on the optimality of
the chosen policy. The case with variance 5 tends to converge to a

different optimal policy. This seems to suggest that the presence
of high variance is another reason to use an adaptive policy rather
than an optimal pre-determined choice.

Similarly Figure 4 shows the results we obtain when δxy is drawn
from a uniform distribution. Specifically, for each edge (x → y),
(0 ≤ δxy ≤ cWxy) is enforced and the extremes of the uniform
distribution are chosen to be centered about the typical delay value
with a varying interval length. Similar to the truncated normal
distribution case, the network adapts and our algorithm ensures
that the deadlines are never violated. Compared to the truncated
normally distributed case, the uniform distribution seems to have a
better effect on finding optimal routes and sticking to these routes.

3.4 Experiment 4: Uniformly Distributed
Worst Case Traversal Times

We perform an experiment with a uniform distribution in which
we select the extremes of the distribution as 0 and the worst case
transmission delay (completely disregarding the information about
the typical transmission time). In this case, the interval length
creates much more variation in the typical traversal times. The
results for this run are shown in Figure 5.

7

0
10
20
30
40

DF = 20 DF = 25

Variance = 1

DF = 30 DF = 35 DF = 40

0
10
20
30
40 Variance = 2

0
10
20
30
40

Tr
an
sm

is
si
on

Ti
m
e

Variance = 3

0
10
20
30
40 Variance = 4

0 1000
0
10
20
30
40

0 1000 0 1000
Packet / Episode No.

Variance = 5

0 1000 0 1000

Figure 4: Transmission Time with Uniformly Distributed Edge Traversing Times.

We compare the transmission times obtained using our safe
reinforcement learning approach to the ones using classical RL and
the rapid routing algorithm from [3]. Classical RL algorithms are
only concerned with maximizing the obtained reward, thus lead
to deadline violations as seen in the figure. The violations occur
due to the exploration of unsafe edges. The algorithm from[3]
does not violate deadlines but the typical transmission times are
higher compared to our safe reinforcement learning approach. This
is because the routing tables are built only once during network
creation. The routing is not adaptive to the changing environment
and routes messages according to the pre-built routing tables. One
way of compensating would be to rebuild the routing tables for [3]
for every packet. This would be highly compute intensive and
impractical as seen in experiment 3.5

Our algorithm is shown to work in meeting the deadlines DF
and also discovering new potential paths as the traversal times over
the initial links in the path vary. Table 2 summarizes the delays
experienced in the network for the three algorithms.

3.5 Experiment 5: Large Networks
In this last set of experiments we investigate the scalability of our
algorithm. We create random networks, with a large number of
nodes n. We ensure the network includes one edge (0→ 1) from
node 0, the initial node, and one edge (n − 2→ n − 1) that reaches
the final node n − 1. We randomize all the other edges present in

Table 3: Average Delays(1000 Episodes) in Section 3.4

DF Classical RL Rapid Routing Safe RL
20 10.32 9.609 9.135
25 10.19 11.98 9.841
30 10.10 14.10 10.283
35 10.23 16.43 9.99
40 9.98 18.593 10.193

the network. We only add edges from a node with a lower index
node to a higher one while ensuring no loops are created in the
networks. Generally the networks generated consist of nodes with
a large number of outgoing edges.

For every edge in the network, (x → y), we randomly extract
a value for the typical delay cTxy ∈ (0, 10] and for the worst case
delay cWxy ∈ [10, 30]. We ensure that there exists a path from every
node x to the destination node n. Networks that do not satisfy the
condition are discarded.

The pre-processing phase is applied as described in Section 2 to
all networks to get the shortest guaranteed total delay to the desti-
nation node n. The deadline for the randomly generated networks
is chosen to be the 1.2 · cit from the initial node i to the destination
node t .

8

0
10
20
30
40

Classical RL

Deadline DF = 20

Rapid Routing [1] Safe RL

0
10
20
30
40 Deadline DF = 25

0
10
20
30
40

Tr
an
sm

is
si
on

Ti
m
e

Deadline DF = 30

0
10
20
30
40 Deadline DF = 35

0 500 1000
0

20

40

0 500 1000
Packet / Episode No.

Deadline DF = 40

0 500 1000

Figure 5: Transmission Time with Uniformly Distributed Edge Traversing Times for Large Intervals.

Figure 6 shows the average delay time and the deadline set for
increasing number of nodes in the randomly generated network.
We send 1000 packets over the network from source to destina-
tion and record the total delay. The algorithm works well finding
paths to the destination minimizing total delays while ensuring
no deadline violations, even for large networks. Classical RL has
higher transmission times generally because of the large number of
outgoing edges from each node and deadlines are violated during
exploration. Rapid routing [3] has low transmission times due to
the routing tables built in the pre-processing stage. However this
method has very high computational complexity and the routing
tables have to be recalculated for every change in δ .

Figure 7 shows the computational time for the transmission of
1000 packets over the networks. We compare the performance of
classical RL and rapid routing algorithm from [3] with our safe
reinforcement learning. Classical RL is the least computationally
complex as it has no pre-processing stage. Our safe learning ap-
proach is a magnitude less computationally intense compared to
rapid routing. In safe RL the pre-processing has to be only run once
during network creation. In case of node addition, the recalculation
is minimal. Comparatively, rapid routing has large routing tables
have to be constructed and evaluated as described in [3].

4 RELATEDWORK
In this section, we discuss prior research related to our work.

The problem of optimal paths in a stochastic network has been
studied previously in [14], [11], and [4]. These prior works consider
the stochastic and dynamic shortest distance problems in aweighted
network and minimize a cost function to obtain the optimal path.
The weights in this case can be considered to be equal to the delays
in the network. Our work builds on these by guaranteeing an upper
bound on the delay while minimizing the weight. We also assume
no prior knowledge on the distributions and also take into account
the dynamic nature of real networks.

Networking systems are of great interest for the application of
machine learning algorithms [13]. Actor-critic method [20] and
value function methods based on gain scheduling method [5] have
investing in depth on using modern computing advances for better
adaptive routing. Similar to these works, we also use reinforcement
learning but perform safe exploration to respect delay constraints.

Using external knowledge for safe reinforcement learning is a
popular method as it enhances learning by using prior information
(derived from human supervisor or otherwise) and prohibits ex-
ploration of unsafe paths. This can be broadly distinguished into
three methods [9]. Providing initial knowledge can mitigate explo-
ration problems using bootstrapping as shown in [7]. A similar
methodology of restricting exploration space is to have a finite set
of demonstrations to discover the state space. These methods have
been applied mainly to physical systems as shown in [17] and [2].

9

0
20
40
60
80
100

Conventional Learning

Average Delay (smoothed) Deadline (smoothed)

0
20
40
60
80
100

Tr
an
sm

is
si
on

Ti
m
e Rapid Routing [3]

Average Delay (smoothed) Deadline (smoothed)

0 100 200 300 400 500
0
20
40
60
80
100

Number of Nodes in the Network

Safe Reinforcement Learning

Average Delay (smoothed) Deadline (smoothed)

Figure 6: Delays for increasing nodes in network.

0 100 200 300 400 500
0

50

100

150

200

Number of Nodes in the Network

Ti
m
e[
s]

Classical RL
Rapid Routing[1]

Safe RL

Figure 7: Computational times for increasing the number of
nodes in the network.

Finally Providing advice uses a teacher to assist during the learn-
ing process. This can either be a teacher offering advice when the
learner considers necessary as shown in [1] and [8]. Similarly, the
teacher can offer advice whenever it deems necessary as shown
in [21], [19]. These methods are not very effective in our problem
as we consider a decentralized approach with each node making
independent decisions.

5 CONCLUSION
In this paper we have applied reinforcement learning to the problem
of routing over real-time networks. To guarantee packet transmis-
sion within a pre-determined timing constraint, we augment the
exploration of the state-space to only explore paths that are safe.
This allows for small delays over the network. The constant eval-
uation of the state-space and exploration of new paths make the
algorithm resilient to changes in the network due to, e.g., conges-
tion, link failures. This also allows us to route packets over new
paths which might not be realized to be safe in the case of static
routing. The decentralized approach used here allows each node to
make routing decisions based only on the current observed packet
delay and the value function of the next node reducing the amount
of information needed at each node.

We verified the stochastic convergence of the algorithm to the
optimal path and performed experiments to verify the resilience
of the reinforcement learning algorithm. Compared to classical
RL we show that our algorithm is robust and never violates set
deadlines. While compared to previous research, our algorithm is
shown to be more adaptive to transmission time variations while
having reduced computational complexity.

REFERENCES
[1] J. A. Clouse and P. E. Utgoff. A teaching method for reinforcement learning.

In Proceedings of the Ninth International Conference on Machine Learning, pages
92–110, 12 1992.

[2] P. Abbeel, A. Coates, and A. Y. Ng. Autonomous helicopter aerobatics through
apprenticeship learning. Int. J. Rob. Res., 29(13):1608–1639, Nov. 2010.

[3] S. Baruah. Rapid routing with guaranteed delay bounds. In 2018 IEEE Real-Time
Systems Symposium (RTSS), pages 13–22, December 2018.

[4] D. P. Bertsekas and J. N. Tsitsiklis. An analysis of stochastic shortest path
problems. Math. Oper. Res., 16(3):580–595, Aug. 1991.

[5] J. Carlström. Decomposition of reinforcement learning for admission control
of self-similar call arrival processes. In Proceedings of the 13th International
Conference on Neural Information Processing Systems, NIPS’00, pages 989–995.
MIT Press, 2000.

[6] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, Dec 1959.

[7] K. Driessens and S. Džeroski. Integrating guidance into relational reinforcement
learning. Machine Learning, 57(3):271–304, Dec 2004.

[8] J. Garcia and F. Fernandez. Safe exploration of state and action spaces in rein-
forcement learning. CoRR, abs/1402.0560, 2014.

[9] J. García and F. Fernández. A comprehensive survey on safe reinforcement
learning. Journal on Machine Learning Research, 16(1):1437–1480, Jan. 2015.

[10] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure,
dynamics, and function using networkx. In G. Varoquaux, T. Vaught, and J. Mill-
man, editors, Proceedings of the 7th Python in Science Conference, pages 11 – 15,
Pasadena, CA USA, 2008.

[11] R. P. Loui. Optimal paths in graphs with stochastic or multidimensional weights.
Commun. ACM, 26(9):670–676, Sept. 1983.

[12] K. Mehlhorn and P. Sanders. Algorithms and Data Structures: The Basic Toolbox.
Springer Publishing Company, Incorporated, 1 edition, 2008.

[13] L. Peshkin and V. Savova. Reinforcement learning for adaptive routing. CoRR,
abs/cs/0703138, 2007.

[14] G. H. Polychronopoulos. Stochastic and Dynamic Shortest Distance Problems. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1992.

[15] W. D. Smart and L. P. Kaelbling. Practical reinforcement learning in continuous
spaces. In Proceedings of the Seventeenth International Conference on Machine
Learning, ICML ’00, pages 903–910, San Francisco, CA, USA, 2000. Morgan Kauf-
mann Publishers Inc.

[16] R. S. Sutton and A. G. Barto. Reinforcement learning: An Introduction. Adaptive
computation and machine learning. MIT Press, 2018.

[17] J. Tang, A. Singh, N. Goehausen, and P. Abbeel. Parameterized maneuver learning
for autonomous helicopter flight. In 2010 IEEE International Conference on Robotics
and Automation, pages 1142–1148, May 2010.

[18] G. Tesauro. Temporal difference learning and td-gammon. Commun. ACM,
38(3):58–68, Mar. 1995.

[19] A. L. Thomaz and C. Breazeal. Reinforcement learning with human teachers:
Evidence of feedback and guidance with implications for learning performance.

10

0
1
2
3

Best Path DF = 20
Chosen path

Best Path DF = 25
Chosen path

Variance = 1

Best Path DF = 30
Chosen path

Best Path DF = 35
Chosen path

Best Path DF = 40
Chosen path

0
1
2
3

Variance = 2

0
1
2
3

Pa
th

Ta
ke
n

0
=
[i

�
t]
,1

=
[i

�
x

�
t]
,2

=
[i

�
x

�
y

�
t]
,3
=
[i

�
x

�
z

�
t]

Variance = 3

0
1
2
3

Variance = 4

0 500 1000
0
1
2
3

0 500 1000 0 500 1000
Packet / Episode No.

Variance = 5

0 500 1000 0 500 1000

Figure 8: Best Path and Chosen Path with Uniformly Distributed Edge Traversing Times.

In Proceedings of the 21st National Conference on Artificial Intelligence - Volume 1,
AAAI’06, pages 1000–1005. AAAI Press, 2006.

[20] H. Tong and T. X. Brown. Reinforcement learning for call admission control and
routing under quality of service constraints in multimedia networks. Machine
Learning, 49(2):111–139, Nov 2002.

[21] P. Q. Vidal, R. I. RodrÃŋguez, M. ÃĄngel RodrÃŋguez GonzÃąlez, and C. V.
Regueiro. Learning on real robots from experience and simple user feedback.
Journal of Physical Agents, 7(1):57–65, 2013.

A ROUTING PATH ANALYSIS
This appendix contains more experiments that analyse the paths
taken by the algorithm.

Figure 8 shows the best path determined by the algorithm and the
path taken during the transmission of packets through the network
for different deadlines and for increasing uniform variance.

The first column shows the best and chosen paths whenDF = 20.
For low variances, the only possible path is {i,x , t }. This ensures that
the deadline is not violated. For higher variances in the transmis-
sion times, new paths are available for transmission of the packets.
For Variance = 4, new path {i,x ,y, t } is feasible and is explored
around packet number 200. The algorithm determines that this is
the best path ({cTxy +cTyt } ⪅ cTxt) for transmission. Even though the
algorithm discovers a better path, it is not always feasible due to
the variance in the transmission times. The path (x → y) is only

feasible if (i → t) is traversed with δit = 04, as this guarantees that
the deadline will not be violated if (x → y) is traversed (cxt = 20).
A similar phenomenon is observed when DF = 30, enabling the
traversal of the path {i,x , z, t } leading to small transmission times
for most packets.

In all cases, higher variance increases the uncertainty in path
selection while making it possible to explore new paths that could
potentially lead to shorter delays. This highlights the need for a
dynamic routing strategy in real networks.

B ALGORITHM COMPARISONS
Table 4 shows general characteristics of safe RL compared to the
previous works. Comparing the three algorithms shows some simi-
larities but also the major areas in which the algirthms differ.

4δ = 0, is not feasible in real networks. We enable 0 transmission times here for ease
of explanation

11

Table 4: Algorithm Properties Comparison

Classical RL Rapid Routing[1] Safe RL
Safety Guarantees No Yes Yes

Pre-Processing Stage No Need to be run for every δ change Run only during structural changes
Exploration ϵ-greedy - Safe ϵ-greedy
Routing Based on probabilities Routing table dependent Based on probabilities

Storage at each node One Q-value for each outgoing edge Static tables One Q-value for each outgoing edge

12

	Abstract
	1 Introduction
	2 Algorithm
	2.1 Pre-processing phase
	2.2 Run-time phase
	2.3 Algorithm
	2.4 An Example Episode

	3 Evaluation
	3.1 Experiment 1: Convergence to the Optimal Route
	3.2 Experiment 2: Adaptation to Edge Congestion
	3.3 Experiment 3: Probabilistic Traversal Times
	3.4 Experiment 4: Uniformly Distributed Worst Case Traversal Times
	3.5 Experiment 5: Large Networks

	4 Related Work
	5 Conclusion
	References
	A Routing Path analysis
	B Algorithm Comparisons

